پیغام خطا

Notice: Undefined offset: 1 در counter_get_browser() (خط 70 از /home/prsiri/domains/prsir.info/public_html/sites/all/modules/counter/counter.lib.inc).

تازه های روابط عمومی و ارتباطات

کتاب

پروفسور ریچارد ساتن عنوان کرد: الگوریتم های هوش_مصنوعی قدرتمند تا 2030

چهارشنبه, بهمن 17, 1397 - 13:15

ریچارد ساتن، استاد دانشگاه آلبرتا (کانادا) از پایه گذاران یادگیری تقویتی معتقد است که دستیابی به الگوریتم های قوی هوش مصنوعی تا سال 2030 محقق خواهد شد.

ریچارد ساتن (Richard Sutton)، یکی از پایه گذاران یادگیری تقویتی محاسباتی (computational reinforcement learning) محسوب می شود. وی با طرح هایی از جمله یادگیری تفاوت زمانی، روش های شبیه سازی سیاست و معماری Dyna، سهم قابل توجهی در این حوزه به خود اختصاص داده است.

ساتن در گفتگو با medium به سوالات مختلفی در زمینه علوم رایانه و هوش مصنوعی (AI) پاسخ می دهد:

تحصیلات خود را در رشته ای غیر مرتبط با علوم رایانه آغاز کردید؛ در این مورد کمی توضیح دهید.
مدرک کارشناسی را در رشته روانشناسی اخذ کردم و سپس در علوم رایانه ادامه تحصیل دادم. این کار را تغییر جهت نمی دانم؛ همواره علاقه مند بودم در مورد فرآیند یادگیری مطالعه کنم و این مبحثی است که در رشته روانشناسی به آن پرداخته می شود. پس از اخذ مدرک کارشناسی در سال 1977، بدلیل علاقه مندی به موضوع هوش مصنوعی (AI) و مسائل مرتبط با این حوزه، علوم رایانه را تا مقطع دکترا ادامه دادم.

پس از اخذ مدرک فوق دکترا از دانشگاه ماساچوست، امهرست در سال 1984، به مدت 10 سال در آزمایشگاه های GTE فعالیت کردم. از سال 1998 یکی از اعضای اصلی دپارتمان هوش مصنوعی آزمایشگاه AT&T بودم؛ از سال 2003 به عنوان استاد در دانشگاه آلبرتا (کانادا) مشغول تدریس شدم و سرپرستی آزمایشگاه یادگیری تقویتی و هوش مصنوعی (RLAI) را برعهده گرفتم.

دیدگاه من در مورد هوش مصنوعی از طریق (تحصیل در رشته) روانشناسی و مطالعه یادگیری انسان و حیوانات، رنگ دیگری پیدا کرد؛ بسیاری از متخصصان هوش مصنوعی از این پیش زمینه بی بهره بودند و روانشناسی، الهام بخش من در این مسیر بود.

توسعه یادگیری تقویتی از دهه 1970 آغاز شده است؛ آیا این روند کند نبوده است؟
یادگیری تقویتی (Reinforcement Learning) یکی از فعال ترین حوزه های پژوهشی در هوش مصنوعی محسوب می شود. من با کند بودن روند توسعه یادگیری تقویتی (RL) موافق نیستم، اما قبول دارم که افزایش منابع محاسباتی تأثیر زیادی در این زمینه داشه است. قدرت محاسبات، عامل افزایش استفاده از آن بوده است.

انتظار می رود که تا سال 2030، هوش مصنوعی (AI) قوی در اختیار داشته باشیم. این مسأله تنها به سخت افزار ارزان بستگی ندارد، بلکه نیازمند الگوریتم های قوی نیز هستیم. معتقدم که درحال حاضر، الگوریتم های قوی هوش مصنوعی در اختیار نداریم، اما می توانیم تا سال 2030 این الگوریتم ها را داشته باشیم.

تا 2030 کدام اهمیت بیشتری دارد: سخت افزار یا نرم افزار؟
این سوال مهمی است که آیا سخت افزار در اولویت است یا نرم افزار. به نرم افزار برای آزمایش سخت افزار نیاز داریم و در دسترس بودن سخت افزار، عامل رسیدن به نرم افزار است. ممکن است که تا 2030، سخت افزارهای کافی در اختیار داشته باشیم، اما همچنان به 10 سال زمان بیشتر برای توسعه الگوریتم های هوشمندتر نیاز داریم.

منافع هوش مصنوعی در روانشناسی و علوم اعصاب بسیار متنوع هستند. چرا تعامل میان هوش مصنوعی (AI)/ یادگیری تقویتی (RL) و روانشناسی/ علوم اعصاب حائز اهمیت است؟
تقویت پایه که یادگیری های مختلف را امکانپذیر می کند، اساسا در مغز یافت می شود. فرآیندهایی در مغز هستند که از قوانین مشابهی برخوردار هستند و با قوانین یادگیری تقویتی مدلسازی می شوند که مدل استاندارد سیستم جهانی (standard model of world system) در مغز گفته می شود.

مغز انسان، مدل مناسب یادگیری روانشناختی و مطالعه رفتارهای حیوانی است. در عین حال، این مدل بر مبنای یادگیری در شرایطی است که قادر به برنامه ریزی باشید. همچنین یک مدل تقویت شده از چگونگی برنامه ریزی و محل یادگیری توالی های مختلف است. با در نظر گرفتن هر دو گزینه، محققان هوش مصنوعی تلاش می کنند تا ذهن انسان را شکل داده و نقطه قوت آن را مشخص کنند.
 

اشتراک گذاری

Facebook Twitter Google+ Share

تبلیغات

      

 

       

 

 

mashghad

 

logo

mosh

mosh

mosh

mosh

mosh

mosh

mosh

فیلم

اطلاعیه

تصاویر

مشارکت

انجمن روابط عمومی ایران به منظور مشارکت و همکاری با فعالان حقیقی و حقوقی حوزه روابط عمومی‌، ارتباطات و بازاریابی آمادگی خود را جهت درج اخبار‌، اطلاعات‌، مقاله‌های علمی و یادداشتِ‌‌پژوهشگران، اساتید و کارشناسان در سایت رسمی انجمن روابط عمومی ایران به آدرس www.prsir.info اعلام می‌دارد سایت رسمی انجمن روابط عمومی ایران امکان شایسته و مناسب جهت به اشتراک گذاشتن اخبار و اطلاعات روابط عمومی، ارتباطات و بازاریابی است.

ارتباط با دبیرخانه

نشانی: تهران - خیابان انقلاب - خیابان قدس - ساختمان آناتول فرانس - طبقه سوم - واحد 11

 

شماره دبیرخانه: 66962516-66962517
نمابر: 66488820
تلگرام:09122261017

ایمیل: info@prsir.info
ایمیل:  haghighi_pr@yahoo.com

آمار بازدید سایت

  • بازدیدکنندگان:
    • امروز:77
    • هفته جاری:3,122
    • ماه جاری:13,313
    • سال جاری:163,507